The University of Nottingham

Power Electronic Converters for HVDC Applications

Prof Pat Wheeler

Power Electronics, Machines and Control (PEMC) Group UNIVERSITY OF NOTTINGHAM, UK

Email pat.wheeler@nottingham.ac.uk

Universidad Tecnica Federico Santa Maria and CONICYT through project MEC 80130065, "Estructuras de Avanzadas de Convertidores de Potencia para Conexion a Red".

Introduction

- Power Electronics for HVDC Power System Applications
 - Applications in Renewable Energy
 - Offshore wind power
 - European DC Grid
 - Power Converter topology options
 - MMC
 - Series Hybrid Alternate Arm Converter
 - Parallel Hybrid

HVDC Applications

AC or DC Transmission

- HVDC Applications
 - Offshore wind farms
 - Remote generation
 - Hydro, wind, wave, solar....
 - Country interconnections
 - Example: UK-France

- Cost of construction
 - Components, space, transportation,...
- Efficiency of operation
 - Losses, downtime,...
- Environmental impact
 - Location, visual impact, resources,...

AC or DC Transmission

- Cost of construction
 - Components, space, transportation,...
- Efficiency of operation
 - Losses, downtime,...
- Environmental impact
 - Location, visual impact, resources,...

AC or DC Transmission

Multiport HVDC Networks

A Simplified Multiport HVDC system

Multiport HVDC Networks

Multiport HVDC Test Facility at University of Nottingham

3.3kV AC, 5kV DC, 5MW Circulating Power Research on energy management, protection, power electronic converters

HVDC Transmission

- UK investing ≈10GW of offshore wind capacity with HVDC links to shore
 - STATCOM-less systems, grid control, ride through and protection
 - rugged, cheap, proven, but traditionally large foot print
- Voltage Source IGBT Converters (VSC HVDC Plus ≈500MW)
 - full controllability, small foot print, black start
 - VSC HVDC topologies for high efficiencies, fault performance

HVDC Converter Topologies

Conventional HVDC Transmission

- Tried and tested technology (50 year history)
- State of the art ±132kV, 6400MW, 2000km
- Problems:
 - Converter station footprint (filters approx 50%)
 - Inability to work on "dead" networks voltage needed for commutation of thyristors
 - Limited scope for reactive power control
 - Power reversal requires DC voltage reversal Limits usage to certain cable types

Based on line commutated converter (LCC) thyristor technology

Voltage Source Converter (VSC) HVDC transmission

- Voltage source converter HVDC is growing rapidly (±800kV 10GW)
- Many advantages over conventional HVDC eg:
 - "Black start" can feed a dead network
 - Active and reactive power control
 - Much smaller filters/no compensation (station footprint much smaller)
 - "Constant" voltage DC link ⇒ multi-terminal applications
 - No voltage reversal for power reversal
- Some key problems for VSC converters
 - Efficiency (switching converter losses)
 - Operation with faulted AC or DC side
 - Scalability (modularity)

Voltage Source Converter (VSC) HVDC transmission

Two-level inverter based on series connected devices

- Simple concept
- Requires series devices
- 2-level operation needs
 relatively high PWM frequency
- High switching losses (total losses 1.7% per station)
- 2-level PWM generates
 significant harmonics filtering

Modular-Multilevel-Converter (M²LC)

- Concept more complex
- Switching of cells controls BOTH the DC side and AC side voltage
- No bulk DC capacitor
- No need for series devices
- Multi-level operation low switching frequency + good harmonic performance
- Low switching losses (typical total losses 1% per station)
- Twice the number of devices required compared to 2-level approach
- Large number of capacitors of significant size
- Voltage on individual capacitors must be controlled

Modular-Multilevel-Converter (M²LC)

Hybrid Topologies

Combination of:

- Multi-level "wave shaping"
 - Series bridges
 - "Modest" switching frequency
 - Fractional rating ⇒ low loss
- Series device "wave steering"
 - Zero voltage switching
 - Low loss

Combination gives:

- High waveform fidelity
- Low loss
- Low device count
 - Semiconductors
 - Capacitors

Scale demonstrator design

- 20MW, 20kV DC, 11kV AC
- 1200A, 3300kV IGBTs
- 1.5kV cell voltage

MMC type chain H-bridge- soft Switched (low loss) V_{DC} v_{CL}

MMC type chain H-bridge- soft Switched (low loss) V_{DC} v_{CL}

- Topology has a very low component count compared to many alternatives
- Chain-Link converters perform wave shaping function
 - Converters outside of main power path => low switching losses
 - Mean Chain-link current typically <20% of DC current
- H-Bridge converters are zero voltage soft switched
 - Device switching frequency = fundamental frequency
- Research Topics
 - Theoretical work on energy control (unbalanced supply etc)
 - Closed loop control and Energy management

Line-Line voltages at the converter terminals

- Chain-link cell capacitors have a tendency to charge or discharge
 - Have to control the voltage of the individual converter chain-link capacitors
- Balancing can be achieved with a sorting algorithm based on the characteristics of the chain-link cells in a given chain-link position

Capacitor Voltage Control one phase with set point = 50V

Series Hybrid Topology

Series Hybrid Topology - AAC

VcI1 10kV **S1** Vs1 5 15 20 S2 ON S1 ON -10 **S1** -12 Vs2 15 20 10kV Condition for zero Vcl2 energy exchange with chain-links $V_{AC}(peak) = 2E_{DC}/\pi$ 5 15 10 20

Series Hybrid Topology - AAC

ADVANTAGES

- Series IGBT switches commutate at near zero voltage
 - Reduce switching losses
 - Improves converter efficiency
- Series H-bridges can support the AC voltage when there is a

DC side fault

- Actively control AC side current to zero
- No need to interrupt fault current with AC side breaker
- Actively control AC current to be reactive
- Gives option of STATCOM performance during DC side fault

Topology Comparisons

	2-level converter	Half-link M ² LC	Full-link M ² MC	Series hybrid	Parallel hybrid
Total Semiconductor count (pu)	1	2	4	2.5	1.5
Total submodule DC capacitor rating (pu)	0	1	1	~0.5	<0.25
Losses	★ Σ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	****	★★x √3 x √3 x √3	******************	
AC Harmonic performance	** **********************************	****	****	***	ade ade ade ade ade
Hard-switched IGBT valve needed?	✓	*	*	*	*
Ability to suppress DC faults?	*	×	√	✓	×

Summary

- Power Converters will be an essential part of the future Electrical Energy Grid
- Renewable Energy Sources are not directly compatible with the grid
 - Requirement for Power Conversion for all power source connections
- Challenges for Power Converter deployment in the Electricity Grid
 - Cost [both purchase cost and cost of losses]
 - Reliability/availability
 - Current regulations and legacy equipment
- Many other topologies exist for AC/AC and AC/HVDC
 - Newton-Picarte project between Universities of
 Nottingham/Talca/Concepcion will look at some alternatives
 - Kick Off meeting was held in Talca a couple of weeks ago!

2015 Season eSuperBike

UNITED KINGDOM · CHINA · MALAYSIA

- 2015 electric bike will have
 3 x Torque of the 2014 bike
- Custom designed and built frame
- Motor and Controller built by the team in Nottingham
- TT on Isle of Man in June 2015!

• > 280km/hr

UNITED KINGDOM · CHINA · MALAYSIA

