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Microgrid Research Activities 



Tertiary Control and EMS system 

Primary Control: Modeling + Inner loops + droop Control (P/Q Sharing). 

Secondary Control: f/V Restoration (Island), Synchronization 

Tertiary Control: Tertiary Level Dispatching, Energy Management and Optimization.  
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Microgrid Research Activities 

• Coordinated Primary Control  (e. g. for Power Quality 
Enhancement and Load Sharing) 

• Centralized and Distributed Secondary Control (e. g. for 
Power Quality and Voltage/Freq. Restoration) 

• Tertiary Control and Energy Management Systems (e. g. 
for Optimization and Power Quality) 

• Application of Multi-Agent Systems based on Consensus 
Algorithm  

• EV charging stations (Analogy with Microgrid Technology) 
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AC Low voltage MicroGrid 
coordinated control: 

AC Microgrids: 

Bus frequency signaling 

 

DC Microgrids: 

Bus voltage signaling 
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Coordinated  control when 
high SoC occurs 

Inner loop: 

ESS:Voltage Controlled Mode 

RES:Current Controlled Mode 

Primary loop: 

ESS:Bus signaling control 

RES:Virtual inertia control 
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Primary Coordinated Control 

Primary Control-Bus signaling Concept 
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Coordinated Secondary Control 

Secondary Control-Frequency Restoration 

steady state 
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Centralized and Distributed configuration 

Decentralized Secondary Control 

Decentralized Control: 

 Communication burden when 
distributed elements increase 

 Needs synchronization of 
restoration term in all elements 

Out of synchronization : 
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Consensus Algorithm Method 

A Sys=(N,E) can be presented as multiple nodes 
N={1..,n} and a set of edge E. For node i, its set of 
neighbors is defined as Ni={j|{i,j}∈E}.  
 
The data stored is denoted as xi(k) with k being 
the iteration step.  
 
Consensus algorithm can be described as 
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Secondary Control with Consensus Algorithm 

Consensus Algorithm: 

 Each node flood information to neighbors 
nearby 

 All elements can reach agreement if all nodes 
have at least one connection with network 

The system can work properly even 
one edge lost communication 
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Constant iteration coefficient for fast 
iteration steps: 

 

  

l1(L): largest eigenvalue of L 

lN-1(L): second least eigenvalue of L 
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- Four RES units 

- One ESS unit 
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Control Implementation with ESS and RES 

ESS  Bus  Signaling RES Virtual  Inertia 
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Controller Implementation 

Control Implementation with ESS and RES 

Coordinated Control Parameters Secondary Control Configuration  
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Active power comparator

- Regulates bus voltages 

- Shares reactive power 

proportionally 

- Line impedance has no 

effect on controller 

- Different PI 

parameters. 

 

 

- Regulates the 

frequency 

- Shares active power 

proportionally 

- No frequency 

measurement is 

required. 

- Different PI 

parameters. 
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Voltage regulator 
 

- Centralized for each dc MG 

- Distributed over the MG cluster 

- Regulates the voltage inside each MG to the 

nominal value when they are not connected. 

- Maintains the bus voltages within an 

acceptable range when they are connected. 
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Power flow regulator 
 

- Using the distributed voltage regulator 

power flow control is achieved. 

- Regulates the power flow between dc 

MGs when they are connected. 

- Power flow is regulated according to 

SOC of batteries inside the MGs. 

 

Power flow regulator 
 

- Using the distributed voltage regulator 

power flow control is achieved. 

- Regulates the power flow between dc 

MGs when they are connected. 

- Power flow is regulated according to 

SOC of batteries inside the MGs. 
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Case study:  
Three  interconnected dc MGs 
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- Each dc MG consists of four units. 

- Rated voltage of the system is 48 V. 

- A communication network facilitates 

cooperation of the MGs. 

- PV and WT work in MPPT and two batteries 

work in droop controlled mode  
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Tertiary Control and EMS system 

Primary Control: Modeling + Inner loops + droop Control (P/Q Sharing). 

Secondary Control: f/V Restoration (Island), Synchronization 

Tertiary Control:  

 Tertiary Level Dispatching, Energy Management and Optimization.  
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EMS implementation 
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EMS implementation 
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Unbalance compensation 
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Unbalance compensation 
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Unbalance Compensation in LabVIEW 
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Experimental Results 
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Distributed Hierarchical Control 
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Distributed Hierarchical Control 
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DCA based distributed optimization for paralleled DC-DC 

Converters 
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DCA based distributed optimization for paralleled DC-DC 

Converters 
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DCA based distributed optimization for paralleled DC-DC 

Converters 
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DCA based DC MG Modeling 

Comm. 

Tca = 0.1s 

Digital Control 

Td = 1e-4s Continuous-Time 
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DCA based DC MG Modeling 
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EV charging stations 

• Nissan Leaf fast recharge profile  
• (Commercially available 

CHAdeMO compatible charger 
manufactured by ABB): 

Fast DC charging 
• Most attractive from the vehicle 

owner  
• point of view (around 30 minutes to 

recharge completely depleted 
batteries) 

• Appropriate for public charging 
stations 

• Distribution grid may experience 
problems 
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EV charging stations 
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EV charging stations 
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